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Interaction between irreversibly adsorbed polymer layers: Is the mean field picture
really inadequate?
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We found out that the mean-field theqiMFT), if done consistently, is in good agreement with experimental
observations for the force between irreversibly adsorbed polymer layers. This result is fairly unexpected in
light of the conventional Cahn-de Gennes mean-fil@dGMF) theory that claims this force is zero. We
reexamine the CdGMF equations and show that the consistency of the CAdGMF approach is broken. This
motivated us to derive an equation for the polymer density on the adsorbing surface that describes a minimum
of the surface free energy. This equation replaces the conventional boundary condition used in CAGMF. The
disjoining pressure is calculated by making use of the developed theory. An excellent agreement with the
experimental results is indicated. We believe that our findings rehabilitate the mean-field theory as one of the
most powerful tools for investigating the polymer-mediated interaction between colloids. Our result show that
the unphysical predictions of CAGMF are due to its inconsistency rather than because this approach is “com-
pletely inadequate to discuss the plate-plate interactions in good sof\er®. de Gennes, Macromolecules
15, 492(1982].
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The aim of this paper is to bridge the gap between thds not entirely consistentrather than totally inadequate
results of the mean-field theoft—3] and experimental ob- More specifically, we show that the consistency of CAGMF
servations/4—6] of the interaction between irreversibly ad- breaks down because the boundary condition for the polymer
sorbed polymer layers. density at the surface is defined artificially. In order to cir-

The system considered in the above theory and expereumvent this problem, we obtain a refined equation for the
ments consists of two parallel plates carrying adsorbed polysurface density of the polymer by performing an accurate
mer layers that are immersed into a good solvent. The maifinimization of theactual surface free energy. This leads to
quantity of interest is the disjoining force acting between they result for the disjoining force which is in excellent agree-
plates due to the presence of adsorbed polymers. In th@ent with experiment.
present work, we deal with the situation of the so-called e should note that the usual limitations of the CAGMF
restricted equilibrium. In this Situation, the homopolymertheory also apply to our approa@ﬁ]_ Specifica”y, our ver-
chains of high molecular weight are irreversibly adsorbedsjon of the mean-field theory does not take into account the
onto the plates so that the polymers cannot escape from thehd (finite molecular weight effects since our approach is
gap between the plates. The adsorbed polymer layers aegill based on the ground state solution of the Edwards dif-
saturated: they are formed in the course of the incubatiofysion equation. In fact, the classical theories of Scheutjens,
period that is long enough to ensure the thermodynamigjeer[8,9], and Semenof10] have shown the importance of
equilibrium with the solution. This situation is described in the end effects in the cases Where the separation between
Refs.[1,4] in great detail. Again, here we restrict ourselves top|ates is larger than the radius of gyration of the polymer. For
the consideration of the good solvent conditions only.  the case of long enough polymers considered here, the end

As is well known, the Cahn-de Gennes mean-fieldeffects are found to be negligibly smgll0]. In addition, the
(CAGMF) theory predicts that the polymer-mediated forcepresent version of our theory is limited in scope since it
between the plates vanishes identically in the situation degeats the polymer-mediated interaction between the irrevers-
scribed above. This result seems to be quite unphysical, egly adsorbed, saturated layers only.
peCiaIIy in the ||ght of detailed .exp(.-:‘rimental Observati0n§ Before proceeding to the discussion of our proposed ap-
[4,5] of the disjoining pressure in this system. The experi-proach, it is worth making a few remarks regarding an alter-
ments reveal that the interaction between the adsorbed Iayelﬁ%tive ana|ysis of the experimenta] ddﬂ] based on the
is purely repulsive[4]. It was found that the corresponding scaling method of de Genrjé@sl2]. This method, which was
force can be described by a simple monotonic, fast decayingroposed in order to remedy the aforementioned unphysical
function of the separation between the plates. behavior of the CAGMF approach, is based on the assump-

Our findings presented in this paper show that the meanjon that the correlation length describing the effective inter-
field approach, if carried out properly, is completely adequateyction between polymers is a spatially dependent function.
for the description of the above experimental situation. WeThe refined version of the de Gennes scaling approach was
show that the reason for unphysical predictions of CAGMF igound to be in reasonably good agreement with experiment
due to the fact that this approach in its standard formulation11]. However, it should be noted that this theory employs an

artificial boundary condition of the same type as that used in
CdGMF. In our opinion, this fact calls for a significant re-
*Email address: chervany@egorl.chem.virginia.edu finement of the scaling approach before this theory can be
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compared with experimenfl3]. In addition, the scaling v

theory operates withour adjustable parameters while our BFs(¥s V) = —ﬂ?’lﬂ§+ \E

refined version of mean-field theoiyFT) involves only

two. b hvy
Moving now to the discussion of our proposed approach, X f V(WP = i) (7 = vyl dy— Tm :

we start with a brief outline of the main formulas of the m

conventional CAGMF theory. Although these formulas are 4)

well known and can be easily found in the litera{ur8], we
will rederive the main results placing the emphasis on th‘?NhereﬁE\fB_uh is the reduced separation.
consistency of the derivation. The calculation of the disjoin- |+ should be noted thak, is an ordinary differentiable

ing pressurdl starts from th_e expre;sion_ for the excess freeq nction of its arguments, i, andv. The latter variable,
energy of the polymer solution confined in slab between tWO‘quasichemicaI potential’, can be eliminated by substitut-

ng]l:”el plates. This energyAF, takes the following form ing the equilibrium order parameter profifﬁ(z) obtained

from Eq.(2) into the definitions of” and ,,. This yields the

h “normalization conditions” of the form

1 1 I
ﬁAF[¢] = —IB'yQp§+ Ef <§(az¢)2+ U(ﬂ4)d2_ UL'

0 2
& ) |1(%,V> ,
h=—""", To=t¢uls| —, v/, 5
o 0= 2<¢m ) (5

where 21 is the separation between the two platess the
distance from the platey(z) is the MFT order parameter
proportional to the square root of the monomer volume fracwhere In(y, ») = [IX[(x*~ 1) (x*~»)]™"%dx. The value of the
tion, ¢ is the value of the order parameter at the platés ~ coveragd’y in Eq. (5) depends on the prehistory of the poly-
the (positive local polymer-surface interaction energy, _meric layers adsorbed onto the plates before they are l_arought
Efgﬁdzis the coverage3=1/kgT is the Boltzmann factor, in contact. For the saturated plates considered Hegds
andv is the excluded volume parameter, which is positivefound to be a simple function of the surface interaction en-
for a good solvent. The monomer uriiuhn) length is set  ergy y of the formT'y=(D3v)~*, whereD is the character-
equal to unity. The Lagrange multipligr is introduced into  istic length of the polymer-surface interaction defined as
Eq. (1) in order to satisfy the constraint that the total number{1,3] D= (68y)"*. Note that the second equation in Ef)
of monomers in the solution does not depend on the separaxpresses the quasichemical potentiah terms of and
tion h. The above constraint corresponds to the aforey,  The first equation in Eq5) definesy,,= ¢m(¢,s,ﬁ) as a
described situation of the irreversible adsorption when th
polymer cannot escape from the gap between the plates. . ) ' ~
Note thatAF[] in Eq. (1) is a functional of an arbitrary it Possible to expresgp, and v in terms ofys andh.
function ¢ that cannot be directly associated with the surface  NOW we come to the crucial point of our derivation,
free energyF.. The surface free enerds can be obtained by which differs S|gn|f|cantly from the standard |mplementat!on
minimizing the free energy function@F with respect to all O,f the MFT aPproaCh- First, we notg that the set O,f equations
variations of the function/(z) subject to the above constant 91Veén above is not closed yet. This can be easily seen by
coverage constraint. The equation for the functif{r(z) substituting yin=m(4s,) and v=w(ys,h) calculated from

which minimizes the functionadF[ /], can be written in the Eq. (5) into Eq.(4) and recognizing the fact th# is stil a
following form: function of an unknown variablgs. The closure adopted in

the standard MFT approach is obtained by postulating the
. . N ~ . “boundary condition,” i.e., the relation betweefy and
(020)% = 30[(2)? = ) I[4{D)? = wih(h)?], (2 (9, which is obtained on the basis of some plausible ar-
guments[1,14]. Equation(3) is then used to close the prob-
- i lem. Here we use a different approach which is based on the
wherev=4;7u—1. Note that the relation between the normal ¢y that the surface free energy has a minimum with respect
derivative of the order parameter at the surfd@gy)s, and  to ¢ at any fixedh andT if thermodynamic equilibrium is
the valuesy,= ;p(o) and = ,:p(h) follows immediately ~Maintained. It is important to note that, and v should be
from Eq. (2), taking the form considered the functions af; when minimizing the surface
energyFs in Eq. (4). It is precisely in this respect that our
~ 5 oo ) approach differs significantly from the method described in
()5 = Bv (s = i) (Y5 = vifpy). (3 Ref.[3]. In this latter work, the same approach to obtaining
the boundary condition by minimizing the surface free en-
. ergy is used, but the dependanceuodn i is ignored in the
Substituting function/(z) into Eq. (1), one obtains the final course of the derivation. The present work rectifies this
expression for the surface free energy of the form seemingly insignificant mathematical omission so that our

Sunction of s and h. Therefore, these two equations make
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approach leads to a remarkably different physical result, a
explained below. —e ¢ (EQ.9)

Taking the derivativédF/ di),, and equating the resultto 6 1 = == Reducedforce f(Eq.11)
zero, one finds

¢S+D(az&f)s+§<j—;‘) =0. 6) 41
s’ h

Note that each term in the refined boundary condition, |
given by Eq.(6) is directly related to the corresponding term
of the surface free energy in E@). The first and the second
terms in Eq.(6) originate from the local polymer interface
energy and the polymer conformational entropy, respectivelyo S e —
The third term is due to the dependance of the quasichemici 2 4 6
potential on the polymer-surface density This last term in
Eq. (6), which is omitted from the boundary condition used
in Ref. [3], produces significant differences between our re-
sults and those of Ref3].

Equations(3) and (6) can be solved simultaneously to
obtain 5 as a function oth. After that, the disjoining pres-

REDUCED SEPARATION h/D

FIG. 1. Reduced forcé in Eq. (11) and coefficientk in Eq. (9)
plotted against the reduced separatidiD.

surell can be found by differentiating with respect tah. f<ﬂ>
Surprisingly, the derivativédu/ dijs);, is eliminated from the _\D _ 4 700]
resulting expression fall, provided the boundary condition P = 18 D% F(x) = (X)) €™ 70, (11)
given by Eq.(6) is satisfied. The final result for the disjoin-
ing pressure read45], .
Bl = vV 7 where we introduced a universal functiégh/D) which de-

2 scribes the reduced force acting on the plates versus the sepa-
ration between them.

Equation(10) was solved numerically and the result for
70 Was used to calculate the reduced fof® D) in Eq.(11)
and k in Eg. (9). The results are shown in Fig. 1. As can be
seen from Fig. 1, the value @&f is positive for any value of

fy dx fy x2dx h h. In addition, « is found to be a decreasing function of the
1 V0= DX = ly)]

Now we are in the position to produce a recipe for the
calculation of the output value @f given the input values of
h andIl',. First, we define the implicit functiog(y) by

L VOC= )2 - h(y)] D separation. This functiop is of the order.of unity forD
=<1 and larger than unity foh/D=<1. This allows us to
(8) conclude that the ne\third) term in Eq.(6) included by us

The derivativex=—(1/2y) (3! i), can be easily calcu- into the boundary condition foy is especially important for

lated through the introduced functiah The result reads s_maII separa;ions between the plates. Thi$ term makes a cru-
cial contribution to the total value of the disjoining pressure

, , and cannot be neglected for any finite valuehéb, except
__¢ (1) +2[1 + ¢(7)]€' (7) (9)  for the “single plate” limith/D —c.
2791+ né' (n)] ’ The reduced forcé(h/D) depicted in Fig. 1 can be fitted
with the functionf;=1.863/h® within the accuracy|fy;
where =/ hm EX)==In1,[X, ()], and the prime de- —f|<0_.042_in the considered range bfD. Note that this
notes differentiation with respect to the argument. result is quite close to the exact expres_sfd?x)zl.Z(‘3 ob-
Substituting Eq(9) into Eq. (6) and solving the simulta- tained from Eq(11) in the “narrow gap” limith/D<1. The

neous Eqs(g) and (6)' one finds the equation foﬂ of the obtained fit of the numerical results fdrgiVeS a Simple
form scaling law for the disjoining pressure written as follows:

BT~ yw™h™3. This result shows that the force between the
_ | plates is always repulsive. This force is proportional to the
1= w(m)]e s =\ = DI = plp)]. 10 ocal energy of the polymer-surface interaction and inversely
proportional to the excluded volume parameter. This is be-
cause the smaller the value pfand the better the quality of
The root of Eq.(10), 7o, defines the ratia/ ¢, for each  the solvent, the smaller the coverage, i.e., the amount of
value of the reduced separatibfD. Substitutingzg into Eq.  polymer adsorbed onto the plates. This explains the above
(7), one obtains the final result for the disjoining pressure inscaling relation, since the osmotic pressure is proportional to
the following form: the density of the polymer confined between the plates.

041801-3



A. . CHERVANYOV AND S. A. EGOROV PHYSICAL REVIEW EG69, 041801(2004)

35000 35000
® PEO1 (M=40 000) ® PEO1(M=40 000)
30000 - o PEO2 (M=160 000) 30000 = Theory
@ Theory
25000 ~ 25000
. 20000 - ~ 4
3 3 20000
2 z
2 15000 2 45000 4
[14
= 10000 - 5
10000
5000 -
5000
0 -
o
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60
SEPARATION 2h (nm) SEPARATION 2h {nm)

FIG. 2. Comparison of the presented theory with experiment. F|G. 3. Comparison of the presented theory with experiment.
The solid line presents the disjoining force calculated by 8  The solid line presents the disjoining force calculated by #8)
plotted against the reduced separation. The circles present the egfotted against the reduced separation. The circles present the ex-
perimental force vs separation profil@s/R vs h/D) between mica  perimental force vs separation profil¢s/R vs h/D) between mica
surfaces bearing adsorbed poly-ethylene oxide across an aqueosisrfaces bearing adsorbed poly-ethylene oxide across toluene. Data
medium (0.IMKNOg3). Open(filled) circles correspond to the de- were taken from Ref{6].

gree of polymerizatiotM =160 000(M =40 00Q. Data were taken
from Ref.[11]. Note that the excluded volume paramaieatoes not enter

the simplified expression for the disjoining force given by
In Fig. 2 we compare our theoretical results with the ex-Eg. (13). However, this force does depend on the quality of
perimental data for the force between two smooth mica sursolvent through the absorbanée which is proportional to
faces immersed in polgthylene oxidgwater solution[11]. v ]
Note that the experimental measurements provide the force 1Nhe accuracy of the above approximate formula for the

acting between the surfaces of two crossed cylinders of thgiSjoining force can be verified by fitting/R from Eq. (13)

radiusR, rather than between two parallel plates. In order to'© the experimental data reproduced in Fig. 2. Treating the

compare the experimental results for this force with our thereduced absorbanok=Aa’m™ as an adjustable parameter,
oretical predictions, we follow the method described in Ref.the best fit is obtained with the valuk=24.4. Given the
[11]. Namely, we employ Derjaguin approximation in order valuesm=44 a.m.u. and'=4.0£1.5 nm[4], this yields the
to relate the force between cylinders to the disjoining presmesh sizea=0.67+0.18 nm, which is quite close to the es-

sure[16]. Adopted for our result fofl, this relation reads  timate reported in the literaturfd.7,1§.
The solid line in Fig. 2 shows the disjoining force calcu-

F(2h) o lated from the exact expression given by EtR) using the
T:ewﬁ—lr%Zf fOx)dx. (120 value of the reduced absorbanéegiven above. The ex-
8Lvh cluded volume parameter is obtained fromw=a3(1-2y),

) ) where y=0.48 is the polymer-solvent interaction parameter

Note that Eq.(12) contains two phenomenological param- o, the polyethylene oxid®0.IMKNO; system[19]. As can
eters (excluded volume parameter and coveragd’ mea-  he seen from Fig. 2, our theoretical curve is in excellent
sured in the monomer unjtsThese parameters are typically agreement with the experimental data.
known for most polymer solutions. It is generally expected that the Flory-type mean-field

Although of considerable theoretical interest, the meantheory described here should work well in the nearly “theta”
field result for the disjoining pressure given by E@2) is  (y~0.5) solvent conditions. This point is confirmed by the
not well suited for practical use by experimentalists and engpove comparison with the experimental results for the dis-
gineers. Keeping this in mind, we found empirically that joining force acting between polymer layers in the solvent of
function f;;(x)=1.86%° provides a good approximation for moderate qualityy=0.48. It is instructive to test the valid-
the actual reduced forcEx). Replacingf(x) with f(X) in ity of our theory for the solvent of intermediate quality with
Eqg. (12), one obtains the following simplified result for the |ower values ofy. Figure 3 shows our result for the disjoin-
disjoining pressure: ing force F calculated from Eq(12) using the valuesy
=0.39 andA=28.7. The theoretical curve fét/R is plotted
against the experimental points for the disjoining force mea-
sured in the polgethylence oxidgtoluene systenfy=0.39.
As can be seen from this figure, the presented theory works
where A=ma °I" is the absorbancem is the monomer reasonably well in the case of a good solvent having inter-
mass, and is the Kuhn length. mediate values of.

F(2h) 1.9657%A&?

R mk (13
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In summary, the refined CAGFT theory properly describesction between colloids in good solvent conditions.
the above experimental results for the disjoining force, once _ )
the consistency of this approach is remedied. The refined The authors are grateful for financial support from the
version of the mean-field theory described here can readiljlational Science Foundation through Grant NeCHE-
be employed for the analysis of the polymer-mediated inter0235768.

P. G. de Gennes, Macromolecul&§, 492(1982. [15] Note that the expression fdd formally coincides with that

(1]

[2] P. G. de Gennes, Macromoleculéd, 1637(1981).

[3] G. Rossi and P. A. Pincus, Macromolecul2g 276 (1989.
[4] J. Klein and P. F. Luckham, Macromolecul&g, 1041(1984).
[5] J. Klein and P. F. Luckham, Natuteondorn) 308 836(1984).
[
[

1
6] J. Klein and P. F. Luckham, Macromoleculés, 721(1985.
]

obtained in Ref[3] if and only if the boundary condition in
Eq. (6) is satisfied. For the boundary conditiq{q+D(&zzAp)S
=0 used in Ref[3] we derived the different result fdil to be
written as follows:BI1=vvyt/2~(1/6D)(dul oh).

[16] B. V. Derjaguin, Kolloid-Z. 69, 155 (1934).

7] For detailed review of the limitations, applicability, and rela- [17] U. Ravin, J. Klein, and T. A. Witten, Eur. Phys. J. & 405

tive importance of the mean-field and self-consistent-field

(2002.

theories cited in this paper see, for example M. Kawaguchi and18] We should note, however, that the mesh sizesed in the
A. Takahashi, Adv. Colloid Interface ScB7, 219 (1992; R. expression folll comes from the lattice Flory-Huggins theory
R. Netz and D. Andelman, Phys. Rep80, 1 (2003. [20] which identifies this size with the exact monomer length.
[8] J. M. H. M. Scheutjens and G. J. Fleer, Macromolecul&s This assumption is not entirely adequate for a realistic polymer
1882(1985. solution because the specific volume of a monomer is gener-
[9] J. M. H. M. Scheutjens and G. J. Fleer, J. Colloid Interface Sci. ally smaller than that of a typical organic solvent molecule
111, 504 (1986. (e.g., tolueng This can make the observéthverage’) mesh
[10] In the leading approximation, the end effects for long macro- size slightly larger than the exact monomer length. A more
molecules of the degree of polymerizatibhare found to be precise estimate for the mesh size can be obtaned by making
proportional toN™™. For details see A. N. Semenov, J. Phys. || use of the formulaa3:vp¢+(1—¢)vs, wherev, v, are the
6, 1759(1996. specific volumes of the solvent molecule and monomer in the
[11] J. Klein and G. Rossi, Macromoleculé&d, 1979(1998. solution, respectively, and is the average concentration of
[12] G. Rossi, P. Pincus, Europhys. LeH, 641(1988. the monomers.
[13] This paper is based entirely on the mean-field approach. W§19] B. Vincent, P. F. Luckham, and F. A. Waite, J. Colloid Inter-
postpone a more detailed discussion of the scaling theory until  face Sci. 73, 508 (1980.
our next publication. [20] P.-G. de GennesScaling Concepts in Polymer Physi@Sor-
[14] P. G. de Gennes, Rep. Prog. Phgg, 187(1969. nell University Press, Ithaca, NY, 1979

041801-5



