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We found out that the mean-field theory(MFT), if done consistently, is in good agreement with experimental
observations for the force between irreversibly adsorbed polymer layers. This result is fairly unexpected in
light of the conventional Cahn–de Gennes mean-field(CdGMF) theory that claims this force is zero. We
reexamine the CdGMF equations and show that the consistency of the CdGMF approach is broken. This
motivated us to derive an equation for the polymer density on the adsorbing surface that describes a minimum
of the surface free energy. This equation replaces the conventional boundary condition used in CdGMF. The
disjoining pressure is calculated by making use of the developed theory. An excellent agreement with the
experimental results is indicated. We believe that our findings rehabilitate the mean-field theory as one of the
most powerful tools for investigating the polymer-mediated interaction between colloids. Our result show that
the unphysical predictions of CdGMF are due to its inconsistency rather than because this approach is “com-
pletely inadequate to discuss the plate-plate interactions in good solvent”[P. G. de Gennes, Macromolecules
15, 492 (1982)].
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The aim of this paper is to bridge the gap between the
results of the mean-field theory[1–3] and experimental ob-
servations[4–6] of the interaction between irreversibly ad-
sorbed polymer layers.

The system considered in the above theory and experi-
ments consists of two parallel plates carrying adsorbed poly-
mer layers that are immersed into a good solvent. The main
quantity of interest is the disjoining force acting between the
plates due to the presence of adsorbed polymers. In the
present work, we deal with the situation of the so-called
restricted equilibrium. In this situation, the homopolymer
chains of high molecular weight are irreversibly adsorbed
onto the plates so that the polymers cannot escape from the
gap between the plates. The adsorbed polymer layers are
saturated: they are formed in the course of the incubation
period that is long enough to ensure the thermodynamic
equilibrium with the solution. This situation is described in
Refs.[1,4] in great detail. Again, here we restrict ourselves to
the consideration of the good solvent conditions only.

As is well known, the Cahn–de Gennes mean-field
(CdGMF) theory predicts that the polymer-mediated force
between the plates vanishes identically in the situation de-
scribed above. This result seems to be quite unphysical, es-
pecially in the light of detailed experimental observations
[4,5] of the disjoining pressure in this system. The experi-
ments reveal that the interaction between the adsorbed layers
is purely repulsive[4]. It was found that the corresponding
force can be described by a simple monotonic, fast decaying
function of the separation between the plates.

Our findings presented in this paper show that the mean-
field approach, if carried out properly, is completely adequate
for the description of the above experimental situation. We
show that the reason for unphysical predictions of CdGMF is
due to the fact that this approach in its standard formulation

is not entirely consistent(rather than totally inadequate).
More specifically, we show that the consistency of CdGMF
breaks down because the boundary condition for the polymer
density at the surface is defined artificially. In order to cir-
cumvent this problem, we obtain a refined equation for the
surface density of the polymer by performing an accurate
minimization of theactual surface free energy. This leads to
a result for the disjoining force which is in excellent agree-
ment with experiment.

We should note that the usual limitations of the CdGMF
theory also apply to our approach[7]. Specifically, our ver-
sion of the mean-field theory does not take into account the
end (finite molecular weight) effects since our approach is
still based on the ground state solution of the Edwards dif-
fusion equation. In fact, the classical theories of Scheutjens,
Fleer[8,9], and Semenov[10] have shown the importance of
the end effects in the cases where the separation between
plates is larger than the radius of gyration of the polymer. For
the case of long enough polymers considered here, the end
effects are found to be negligibly small[10]. In addition, the
present version of our theory is limited in scope since it
treats the polymer-mediated interaction between the irrevers-
ibly adsorbed, saturated layers only.

Before proceeding to the discussion of our proposed ap-
proach, it is worth making a few remarks regarding an alter-
native analysis of the experimental data[11] based on the
scaling method of de Gennes[1,12]. This method, which was
proposed in order to remedy the aforementioned unphysical
behavior of the CdGMF approach, is based on the assump-
tion that the correlation length describing the effective inter-
action between polymers is a spatially dependent function.
The refined version of the de Gennes scaling approach was
found to be in reasonably good agreement with experiment
[11]. However, it should be noted that this theory employs an
artificial boundary condition of the same type as that used in
CdGMF. In our opinion, this fact calls for a significant re-
finement of the scaling approach before this theory can be*Email address: chervany@egor1.chem.virginia.edu
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compared with experiment[13]. In addition, the scaling
theory operates withfour adjustable parameters while our
refined version of mean-field theory(MFT) involves only
two.

Moving now to the discussion of our proposed approach,
we start with a brief outline of the main formulas of the
conventional CdGMF theory. Although these formulas are
well known and can be easily found in the literature[1,3], we
will rederive the main results placing the emphasis on the
consistency of the derivation. The calculation of the disjoin-
ing pressureP starts from the expression for the excess free
energy of the polymer solution confined in slab between two
parallel plates. This energy, 2DF, takes the following form
[1,3]:

bDFfcg = − bgcs
2 +

1

2
E

0

h S1

3
s]zcd2 + vc4Ddz−

vmG

2
,

s1d

where 2h is the separation between the two plates,z is the
distance from the plate,cszd is the MFT order parameter
proportional to the square root of the monomer volume frac-
tion, cs is the value of the order parameter at the plate,g is
the spositived local polymer-surface interaction energy,G
;e0

hc2dz is the coverage,b;1/kBT is the Boltzmann factor,
and v is the excluded volume parameter, which is positive
for a good solvent. The monomer unitsKuhnd length is set
equal to unity. The Lagrange multiplierm is introduced into
Eq. s1d in order to satisfy the constraint that the total number
of monomers in the solution does not depend on the separa-
tion h. The above constraint corresponds to the afore-
described situation of the irreversible adsorption when the
polymer cannot escape from the gap between the plates.

Note thatDFfcg in Eq. (1) is a functional of an arbitrary
functionc that cannot be directly associated with the surface
free energyFs. The surface free energyFs can be obtained by
minimizing the free energy functionalDF with respect to all
variations of the functioncszd subject to the above constant

coverage constraint. The equation for the functionĉszd
which minimizes the functionalDFfcg, can be written in the
following form:

s]zĉd2 = 3vfĉszd2 − ĉshd2gfĉszd2 − nĉshd2g, s2d

wheren=cm
−2m−1. Note that the relation between the normal

derivative of the order parameter at the surface,s]zĉds, and

the valuescs; ĉs0d and cm; ĉshd follows immediately
from Eq. s2d, taking the form

s]zĉds
2 = 3vscs

2 − cm
2 dscs

2 − ncm
2 d. s3d

Substituting functionĉszd into Eq. s1d, one obtains the final
expression for the surface free energy of the form

bFsscs,cm,nd = − bgcs
2 +Îv

3

3SE
cm

cs Îsc2 − cm
2 dsc2 − ncm

2 ddc −
ĥncm

4

2
D ,

s4d

whereĥ;Î3vh is the reduced separation.
It should be noted thatFs is an ordinary differentiable

function of its argumentscs, cm, andn. The latter variable,
“quasichemical potential”n, can be eliminated by substitut-

ing the equilibrium order parameter profileĉszd obtained
from Eq.(2) into the definitions ofG andcm. This yields the
“normalization conditions” of the form

ĥ =

I1S cs

cm
,nD

cm
, G0 = cmI2S cs

cm
,nD , s5d

where Insy,nd=e1
yxnfsx2−1dsx2−ndg−1/2dx. The value of the

coverageG0 in Eq. s5d depends on the prehistory of the poly-
meric layers adsorbed onto the plates before they are brought
in contact. For the saturated plates considered here,G0 is
found to be a simple function of the surface interaction en-
ergyg of the formG0=sDÎ3vd−1, whereD is the character-
istic length of the polymer-surface interaction defined as
f1,3g D;s6bgd−1. Note that the second equation in Eq.s5d
expresses the quasichemical potentialn in terms ofcs and

cm. The first equation in Eq.s5d definescm=cmscs,ĥd as a

function of cs and ĥ. Therefore, these two equations make

it possible to expresscm and n in terms ofcs and ĥ.
Now we come to the crucial point of our derivation,

which differs significantly from the standard implementation
of the MFT approach. First, we note that the set of equations
given above is not closed yet. This can be easily seen by

substitutingcm=cmscs,ĥd and n=nscs,ĥd calculated from
Eq. (5) into Eq. (4) and recognizing the fact thatFs is still a
function of an unknown variablecs. The closure adopted in
the standard MFT approach is obtained by postulating the
“boundary condition,” i.e., the relation betweencs and

s]zĉds, which is obtained on the basis of some plausible ar-
guments[1,14]. Equation(3) is then used to close the prob-
lem. Here we use a different approach which is based on the
fact that the surface free energy has a minimum with respect
to cs at any fixedh and G if thermodynamic equilibrium is
maintained. It is important to note thatcm and n should be
considered the functions ofcs when minimizing the surface
energyFs in Eq. (4). It is precisely in this respect that our
approach differs significantly from the method described in
Ref. [3]. In this latter work, the same approach to obtaining
the boundary condition by minimizing the surface free en-
ergy is used, but the dependance ofm on cs is ignored in the
course of the derivation. The present work rectifies this
seemingly insignificant mathematical omission so that our
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approach leads to a remarkably different physical result, as
explained below.

Taking the derivatives]Fs/]csdh and equating the result to
zero, one finds

cs + Ds]zĉds +
1

2
S ] m

] cs
D

h

= 0. s6d

Note that each term in the refined boundary condition
given by Eq.(6) is directly related to the corresponding term
of the surface free energy in Eq.(4). The first and the second
terms in Eq.(6) originate from the local polymer interface
energy and the polymer conformational entropy, respectively.
The third term is due to the dependance of the quasichemical
potential on the polymer-surface densitycs. This last term in
Eq. (6), which is omitted from the boundary condition used
in Ref. [3], produces significant differences between our re-
sults and those of Ref.[3].

Equations(3) and (6) can be solved simultaneously to

obtain cs as a function ofĥ. After that, the disjoining pres-
sureP can be found by differentiatingFs with respect toh.
Surprisingly, the derivatives]m /]csdh is eliminated from the
resulting expression forP, provided the boundary condition
given by Eq.(6) is satisfied. The final result for the disjoin-
ing pressure reads[15],

bP =
vncm

4

2
. s7d

Now we are in the position to produce a recipe for the
calculation of the output value ofP given the input values of
h andG0. First, we define the implicit functionfsyd by

E
1

y dx
Îsx2 − 1dfx2 − fsydg

E
1

y x2dx
Îsx2 − 1dfx2 − fsydg

=
h

D
.

s8d

The derivativek;−s1/2csds]m /]csdh can be easily calcu-
lated through the introduced functionf. The result reads

k = −
f8shd + 2f1 + fshdgj8shd

2hf1 + hj8shdg
, s9d

where h=cs/cm, jsxd=−ln I2fx,fsxdg, and the prime de-
notes differentiation with respect to the argument.

Substituting Eq.(9) into Eq. (6) and solving the simulta-
neous Eqs.(3) and (6), one finds the equation forh of the
form

hf1 − kshdge−jshd = Îsh2 − 1dfh2 − fshdg. s10d

The root of Eq.(10), h0, defines the ratiocs/cm for each
value of the reduced separationh/D. Substitutingh0 into Eq.
(7), one obtains the final result for the disjoining pressure in
the following form:

bP =

fS h

D
D

18vD4, fsxd = f„h0sxd…e4jfh0sxdg, s11d

where we introduced a universal functionfsh/Dd which de-
scribes the reduced force acting on the plates versus the sepa-
ration between them.

Equation(10) was solved numerically and the result for
h0 was used to calculate the reduced forcefsh/Dd in Eq. (11)
andk in Eq. (9). The results are shown in Fig. 1. As can be
seen from Fig. 1, the value ofk is positive for any value of
h. In addition,k is found to be a decreasing function of the
separation. This function is of the order of unity forh/D
&1 and larger than unity forh/D&1. This allows us to
conclude that the new(third) term in Eq.(6) included by us
into the boundary condition forc is especially important for
small separations between the plates. This term makes a cru-
cial contribution to the total value of the disjoining pressure
and cannot be neglected for any finite value ofh/D, except
for the “single plate” limith/D→`.

The reduced forcefsh/Dd depicted in Fig. 1 can be fitted
with the function f fit =1.867D3/h3 within the accuracyuf fit
− f u,0.042 in the considered range ofh/D. Note that this
result is quite close to the exact expressionfsxd=1.2x−3 ob-
tained from Eq.(11) in the “narrow gap” limith/D!1. The
obtained fit of the numerical results forf gives a simple
scaling law for the disjoining pressure written as follows:
bP,gv−1h−3. This result shows that the force between the
plates is always repulsive. This force is proportional to the
local energy of the polymer-surface interaction and inversely
proportional to the excluded volume parameter. This is be-
cause the smaller the value ofg and the better the quality of
the solvent, the smaller the coverage, i.e., the amount of
polymer adsorbed onto the plates. This explains the above
scaling relation, since the osmotic pressure is proportional to
the density of the polymer confined between the plates.

FIG. 1. Reduced forcef in Eq. (11) and coefficientk in Eq. (9)
plotted against the reduced separationh/D.
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In Fig. 2 we compare our theoretical results with the ex-
perimental data for the force between two smooth mica sur-
faces immersed in poly(ethylene oxide)-water solution[11].
Note that the experimental measurements provide the force
acting between the surfaces of two crossed cylinders of the
radiusR, rather than between two parallel plates. In order to
compare the experimental results for this force with our the-
oretical predictions, we follow the method described in Ref.
[11]. Namely, we employ Derjaguin approximation in order
to relate the force between cylinders to the disjoining pres-
sure[16]. Adopted for our result forP, this relation reads

Fs2hd
R

= 6pb−1G3v2E
3Gvh

`

fsxddx. s12d

Note that Eq.s12d contains two phenomenological param-
eters sexcluded volume parameterv and coverageG mea-
sured in the monomer unitsd. These parameters are typically
known for most polymer solutions.

Although of considerable theoretical interest, the mean-
field result for the disjoining pressure given by Eq.(12) is
not well suited for practical use by experimentalists and en-
gineers. Keeping this in mind, we found empirically that
function f fitsxd=1.867x−3 provides a good approximation for
the actual reduced forcefsxd. Replacingfsxd with f fitsxd in
Eq. (12), one obtains the following simplified result for the
disjoining pressure:

Fs2hd
R

=
1.96b−1Aa2

mh2 , s13d

where A=ma23G is the absorbance,m is the monomer
mass, anda is the Kuhn length.

Note that the excluded volume parameterv does not enter
the simplified expression for the disjoining force given by
Eq. (13). However, this force does depend on the quality of
solvent through the absorbanceA, which is proportional to
v−1.

The accuracy of the above approximate formula for the
disjoining force can be verified by fittingF /R from Eq. (13)
to the experimental data reproduced in Fig. 2. Treating the
reduced absorbanceÂ=Aa2m−1 as an adjustable parameter,
the best fit is obtained with the valueÂ=24.4. Given the
valuesm=44 a.m.u. andG=4.0±1.5 nm[4], this yields the
mesh sizea=0.67±0.18 nm, which is quite close to the es-
timate reported in the literature[17,18].

The solid line in Fig. 2 shows the disjoining force calcu-
lated from the exact expression given by Eq.(12) using the
value of the reduced absorbanceÂ given above. The ex-
cluded volume parameterv is obtained fromv=a3s1−2xd,
wherex=0.48 is the polymer-solvent interaction parameter
for the poly(ethylene oxide)/0.1MKNO3 system[19]. As can
be seen from Fig. 2, our theoretical curve is in excellent
agreement with the experimental data.

It is generally expected that the Flory-type mean-field
theory described here should work well in the nearly “theta”
sx,0.5d solvent conditions. This point is confirmed by the
above comparison with the experimental results for the dis-
joining force acting between polymer layers in the solvent of
moderate qualitysx=0.48d. It is instructive to test the valid-
ity of our theory for the solvent of intermediate quality with
lower values ofx. Figure 3 shows our result for the disjoin-
ing force F calculated from Eq.(12) using the valuesx

=0.39 andÂ=28.7. The theoretical curve forF /R is plotted
against the experimental points for the disjoining force mea-
sured in the poly(ethylence oxide)/toluene systemsx=0.39d.
As can be seen from this figure, the presented theory works
reasonably well in the case of a good solvent having inter-
mediate values ofx.

FIG. 2. Comparison of the presented theory with experiment.
The solid line presents the disjoining force calculated by Eq.(12)
plotted against the reduced separation. The circles present the ex-
perimental force vs separation profiles(F /R vs h/D) between mica
surfaces bearing adsorbed poly-ethylene oxide across an aqueous
medium s0.1MKNO3d. Open(filled) circles correspond to the de-
gree of polymerizationM =160 000sM =40 000d. Data were taken
from Ref. [11].

FIG. 3. Comparison of the presented theory with experiment.
The solid line presents the disjoining force calculated by Eq.(12)
plotted against the reduced separation. The circles present the ex-
perimental force vs separation profiles(F /R vs h/D) between mica
surfaces bearing adsorbed poly-ethylene oxide across toluene. Data
were taken from Ref.[6].
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In summary, the refined CdGFT theory properly describes
the above experimental results for the disjoining force, once
the consistency of this approach is remedied. The refined
version of the mean-field theory described here can readily
be employed for the analysis of the polymer-mediated inter-

action between colloids in good solvent conditions.
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